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SUMMARY 

This paper discusses incompressible Navier-Stokes solution methods with an emphasis on the pseudocom- 
pressibility method. A steady-state flow solver based on the pseudocompressibility approach is then 
described. This flow solver code has been used to analyse the internal flow in the Space Shuttle main engine 
hot-gas manifold. Salient features associated with this three-dimensional realistic flow simulation are 
discussed. Numerical solutions relevant to the current engine analysis and the redesign effort are discussed 
along with experimental results. This example demonstrates the potential of computational fluid dynamics as 
a design tool for aerospace applications. 
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INTRODUCTION 

Incompressible flows are encountered in many realistic engineering problems related to hydro- 
dynamics and also to low-speed aerodynamics. However, to date, computational flow simulation 
has not been a critical element in resolving many of these problems. For instance, impellers, 
autmobiles, submarines, chemical reactors, etc. have been designed reasonably well by empirical 
means. As technologies advance, the design of modern flow devices tends to be more compact and 
highly efficient. Therefore the approach relying on empiricism and simplified analysis becomes 
inadequate for resolving problems associated with those devices requiring advanced analysis. For 
example, in analysing and redesigning the current Space Shuttle main engine (SSME) power head, 
computational simulations became an economical and time-saving supplement to experimental 
data. There are vast numbers of other real-world problems which demand accurate viscous 
incompressible flow solutions, such as rocket engine fuel flow, flow through an impeller (as in the 
turbo pump in the SSME) and biomedical flow (as in an artificial heart). There have been many 
computational simulations reported in the past on these subjects. In response to these demands, 
the present study attempts to develop an alternative method for simulating three-dimensional 
viscous incompressible flows. This paper is a summary of our recent effort (NASA Ames, 
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Rocketdyne and NASA Marshall Space Flight Center) to develop and apply an incompressible 
Navier-Stokes solver with a special emphasis on SSME applications. 

A major problem involved in solving the incompressible Navier-Stokes equations comes from 
the lack of a pressure term in the continuity equation. In two-dimensional (2D) problems one can 
bypass this difficulty by using a stream function-vorticity formulation. In three dimensions (3D) a 
similar approach can be adopted using a vorticity-velocity formulation. However, the pressure 
term is removed at  the expense of introducing three vorticity equations as well as requiring 
vorticity boundary conditions. In 2D, computational efficiency is not a major problem; however, 
in realistic 3D applications, satisfying continuity in a reasonable amount of computing time 
becomes a primary issue. Naturally, computational efficiency is of primary importance in addition 
to accuracy and robustness. For convenience and flexibility, a primitive variable formulation in 
generalized curvilinear co-ordinates is chosen, and our discussion is limited to this formulation 
using a finite difference approach. Derivation of equations and algorithmic details can be found in 
our earlier publications'-3 and only equations relevant to the present discussion will be given in 
this paper. 

SOLUTION METHODS 

Unsteady 3D incompressible flow with constant density is governed by the following 
Navier-Stokes equations: 

auilaxi  = 0, (1) 

aui au.u. ap az i j  
-+II!=-- + -, at axj ax i  axj 

where t is the time, x i  are the Cartesian co-ordinates, ui are the corresponding velocity 
components, p is the pressure and t i j  is the viscous stress tensor. Here all variables are non- 
dimensionalized by a reference velocity and length scale. The viscous stress tensor can be written 
as 

tij=2vSij-Rij, (3) 

Here v is the kinematic viscosity, S i j  is the strain rate tensor and Ri j  are the Reynolds stresses. 
Various levels of closure models for R ,  are possible. In the present study turbulence is simulated 
by an eddy viscosity model using a constitutive equation of the form 

where v, is the turbulent eddy viscosity. By including the normal Stress Rkk in the pressure, v in 
equation ( 3 )  can be replaced by v + vt, namely 

t j j  = 2(v + VJSij = 2v,sij.  (6) 
In the remainder of this paper the total viscosity vT will be represented simply by v.  Therefore the 
incompressible Navier-Stokes equations are modified to allow variable viscosity in the present 
formulation. 

In this section a few solution methods used in previous flow solver development work are briefly 
discussed. 
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Method using Poisson's equation for pressure 

Perhaps the oldest and most commonly used method of satisfying the continuity equation is 
with the use of a derived equation, namely Poisson's equation for p re~su re .~  The usual 
computational procedure is to solve the pressure field such that continuity is satisfied at the next 
time level. This procedure usually requires a relaxation scheme iterating on pressure until the 
divergence-free condition is satisfied within a specified numerical accuracy. To obtain a 
divergence-free velocity field numerically, spatial differencing of the Laplacian operator in 
Poisson's equation has to be consistent with the velocity differencing. Instead of a Laplacian 
operator, divergence of a gradient operator may be necessary. Even though this approach in 
general needs acceleration schemes to enhance computational efficiency further for three- 
dimensional problems, successful computations have been made.5*6 

Fractional step method 

The fractional step method can be used for time-dependent computations of the incompressible 
Navier-Stokes  equation^.^ - l4 Here the time evolution is approximated by several steps. Various 
operator splittings can be adopted by treating the mommentum equation as a combination of 
convection, pressure and viscous terms. The common application of this method is done by two 
steps. The first step is to solve for an auxilary velocity field using the momentum equation in which 
the pressure gradient term can be computed from the pressure in the previous time stept0 or can be 
excluded entirely." In the second step the pressure is computed which will map the auxiliary 
velocity onto a divergence-free velocity field. 

A generalized flow solver based on this approach using a staggered grid has been developed in 
conjunction with the present work mainly for time-dependent computations. Details of this solver, 
which require lengthy description of various aspects such as the spatial-differencing scheme which 
maintains conservativeness, time integration and associated boundary conditions, can be found in 
Reference 15. 

Pseudocompressibility method 

Recent advances in the state of the art in computational fluid dynamics (CFD) have been made 
in conjunction with compressible flow computations. Therefore it is of significant interest to be 
able to use some of these compressible flow algorithms. To do this, the artificial compressibility 
method of Chorin16 can be used. In this formulation the continuity equation is modified by adding 
a time derivative of the pressure term, resulting in 

1 a p  au. 
p a t  axi 
-- +-= 0. (7) 

Together with the unsteady momentum equations, this forms a hyperbolic-parabolic type of time- 
dependent system of equations. Thus fast implicit schemes developed for compressible flows, such 
as the approximate factorization scheme by Beam and Warming" or Briley and McDonald,'*' 
can be implemented. Various applications evolved from this concept have been reported for 
obtaining steady-state solutions.' - 3* 20, 2' Merklc and Athavale22 have successfully computed 
time-dependent flows by subcycling each time step to satisfy the continuity equation. 

Strigberger23 and, independently, Briley et al. 24 interpreted the pseudocompressible formu- 
lation as a simplified form of low-Mach-number compressible equations. Then the low-Mach- 
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number approximation of the unsteady compressible flow equations becomes 

at+ JP (;) z+ uixi=o,  JP 

where M is the Mach number. Therefore the pseudocompressible formulation represented by 
equation (7) does not fully satisfy the time-dependent compressible flow formulation and is 
intended mainly for steady-state computations. As shown above, unsteady flow calculations may 
be performed by including the third term in the above equation. If approximate factorization is 
applied, where 1/M2 corresponds to B, a large value of j3 will introduce factorization error. 
Therefore the unfactored form would be preferable for time-dependent calculations. 

In an incompressible flow a disturbance in the pressure causes waves which travel with infinite 
speed. When pseudocompressibility is introduced, waves of finite speed result in which the 
magnitude of the speed depends upon the pseudocompressibility constant p. In a true incom- 
pressible flow the pressure field is affected instantaneously by a disturbance in the flow, but with 
pseudocompressibility there will be a time lag between the flow disturbance and its effect on the 
pressure field. In viscous flows the behaviour of the boundary layer is very sensitive to the 
streamwise pressure gradient, especially when the boundary layer is separated. If separation is 
present, a pressure wave travelling with finite speed will cause a change in the local pressure 
gradient which will affect the location of the flow separation. This change in separated flow will 
feed back to the pressure field, possibly preventing convergence to a steady state. An extensive 
mathematical account of the pseudocompressibility approach is given by Temam.25 

Among the various solution techniques, the method of pseudocompressibility is chosen to gain 
efficiency and robustness in solving 3D real-world problems which require large numbers of grid 
points in curvilinear co-ordinates. In the present paper the algorithm and its physical interpret- 
ation are described. Also, other practical considerations such as grid-induced error, boundary 
conditions and a multiple-zone approach are presented. To improve the computational efficiency 
and accuracy, various acceleration schemes and modifications have been tried. The numerical 
scheme implemented in the present flow solver (INS3D code) will be summarized next. 

NUMERICAL SCHEME 

Governing equations in generalized co-ordinates 

transformed into general curvilinear co-ordinates by introducing the independent variables 
To perform calculations on 3D arbitrarily shaped geometries, the physical co-ordinates are 

Applying the transformation to the governing equations ( 2 )  and (7) yields 

Here 

(3 a -  A 

- D +-(Ei - EVi) = 0. 
J T  ati (9) 

, 
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where J is the Jacobian of the transformation. The contravariant velocities U j  (without metric 
normalization) are defined as 

Ui = ( t i l t  + ( 5 i ) x u  + ( 5 i ) y V  + (5i)zw. 

The viscous terms are given by 

- v  E .=- 
"' J 

When v is constant, the contribution of the second group of terms sums to zero when the velocity 
field is divergence-free. However, since in general v varies in space and time, these terms have to be 
kept. For the flow with constant v in orthogonal co-ordinates, the above full viscous terms can be 
simplified further as follows: 

Difference equations 

There are a number of different ways of defining variables in a grid system. Either standard cell 
node oriented or a staggered arrangement can be chosen. In Cartesian co-ordinates a staggered 
grid has several favourable proper tie^.^, ' ' In generalized co-ordinates these advantages become 
obscured because of the interpolation required. However, a fully conservative differencing scheme 
can be devised maintaining the convenience of a staggered arrangement in a Poisson solver.' 
Using any grid system, spatial differencing can be done either in finite difference or finite volume 
form. The finite volume scheme usually behaves better near geometric singularities. In spatial 
differencing, both central differencing and upwind differencing have been tried. In this report only 
the work using central differencing will be discussed. 

The numerical algorithm used to advance equation (9) in time is an implicit, non-iterative, 
approximately factored, finite difference scheme.' - l 9  The time differencing used by this scheme is 
generally known as the trapezoidal rule and is given by 

where the superscript n refers to the nth time step. 
The problem is to solve for D"+ ', and this is non-linear in nature since @+ ' = I?(Dn+ ') is a non- 

linear function of D"". The following linearization procedure is used. A local Taylor expansion 
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about D" yields 

e" = ~ + $ ( D " + ' - D " ) + O ( A T ~ ) ,  

where Ai is the Jacobian matrix 

A aBi A,=- 
' aD' 

The Jacobian matrices can be represented by 

where 

Substituting equation (13) into equation (9) results in the governing equation in delta form: 

where 

AT for trapezoidal, "={ 267 for Euler, 

6, =finite difference operator for a/at. 

At this point it should be noted that the notation of the form [6,(A - r)]D refers to 

aA a t  ar at 1 and not -D--D. 

Approximate factorization 

The solution of equation (15) would involve a formidable matrix inversion problem. With the 
use of an alternating direction implicit (ADI) type scheme, the problem could be reduced to the 
inversion of three matrices of small bandwidth, for which there exist some efficient solution 
algorithms. The particular AD1 form used here is known as approximate factorization (AF). It is 
difficult to implement the AF scheme to equation (15) in its full matrix form. Noting that at steady 
state the left-hand side of equation (15) approaches zero, a simplified expression for the viscous 
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term as shown in equation ( l lb)  is used on the left-hand side. To maintain the accuracy of the 
solution, the entire viscous term is used on the right-hand side. Using this, the governing equation 
becomes 

LCL,L,(D"+' - D")= RHS, (16) 
where 

L, = I +-.IJ"+ 1S,(A7 - y,) 1, r ;  
L,= z+-JJ"+'h,(A^",-y,) , [ ;  1 

1 L, = [ I +z J" + IS,(& - y 3 )  
AT 

and RHS is the right-hand side of equation (15). When second-order central differencing is used, 
the solution to this problem becomes the inversion of three block tridiagonal matrices. The 
inversion problem is reduced to the three inversions: 

(L,)AD= RHS, 
(L , )A6 = AD, 
(LJAD"' = AD. 

These inversions are carried out for all interior points, and the boundary conditions can be 
implemented explicitly. It is possible, however, to implement the boundary conditions implicitly. 

The factorization has introduced the following second-order cross-product term into the 
equation: 

h2[S5AlS,A2 + S,A2S,A, + S,A,S,A,]AD + O(h3), (19) 

where 

To maintain the second-order accuracy of the scheme, the added terms must be kept smaller than 
the original terms in the equations everywhere in the computational domain. This puts a 
restriction on the size of the pseudocompressibility parameter b. The proper choice of p is 
discussed in our earlier reports.'*2 In applying the approximate factorization scheme, it has been 
found that the stability of the scheme is dependent on the use of some higher-order smoothing 
terms, These are used to damp out higher-frequency oscillations which arise in the solution 
because of the use of second-order central differencing. and will be discussed in a following section. 

Numerical dissipationlsmoothing 

Higher-order smoothing terms are required to make the present algorithm stable. These terms 
help to damp out the higher-order oscillations in the solution that are caused by the use of second- 
order central differencing. The smoothing term can be related to an upwind finite difference 
approximation. An extensive discussion on numerical dissipation can be found in Reference 26. In 
this report, specifics relevant to the pseudocompressible formulation are discussed. 
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Including these smoothing terms, equations (16) and (17) become 

L,L,L,(D"+' -D") = RHS O~(I~) -E , [ (V~A, )~  +(V,A,)2 +(VcA,)2]D", 

where 

1 , (17') 

J" + 9,($ - y 3 )  + ci V ~ A ~  . 1 
Here V and A represent forward and backward spatial-differencing operators respectively. To 
preserve the tridiagonal nature of the system, only second-order smoothing can be used on the left- 
hand side of the equation, whereas fourth-order smoothing is used on the right-hand side. When 
the diagonal algorithm (described in a later section) is used, however, it is feasible to increase the 
bandwidth of the system to a pentadiagonal. This makes it possible to use fourth-order smoothing 
on the left-hand side of the equations also. When this combination of dissipation terms is used, the 
AF algorithm will be stable if E~ and E ,  satisfy a certain relation.26 

To study the nature of the numerical smoothing, one-dimensional forms of dissipation terms are 
represented as follows: 

[l - E ~ V ~ A , ] ( ~ " + '  -p")= -~,(v,A,)~p". (20) 
Suppose p is represented by the discrete Fourier expansion 

where 

271 
N A 5  

k = __ n = wave number, 

n= - N/2,. . . , O ,  1,. . . , (N/2- l), 
N = number of mesh points. 

Substituting equation (21), equation (20) can be written as 

[l -E ik l ] (p+1-8")=  -Ee(k))2p, 
where 

k' = - 2 + 2 coocos (k), 
(k')' = 6 - 8 cos ( k )  + 2 cos (2k). 

From this, the amplification factor can be defined as 

@"+I [l - E i k ' - E e ( k ) 2 ]  o=-- - 
8" [ 1 - Eik'] 

To damp out the numerical fluctuations as time advances, the absolute value of the amplification 
factor c has to be less than one for all possible frequencies, i.e. 

101 < 1. 
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Noting that k‘ is always negative, this requirement leads to the relation 

E,(k’)Z<2(1-Eik’). (244 

It can be shown that the above inequality is always satisfied if 

2E,d Ei .  (24b) 

The exact relation between these two coefficients can be determined only by a non-linear stability 
analysis. In the present code ei is taken to be three times larger than E,. From the expression given 
in equation (231, it is clear that if E~ is too large, the rate of damping will be diminished. It may not 
be advantageous to take an excessively large value for ei over E,. The choice of E, depends on the 
Reynolds number and the grid spacings. However, as discussed later, large values of E, adversely 
affect the accuracy of the continuity equation. Therefore the magnitude of E, is usually taken to be 
small. If grid sizes are fine enough to resolve the changes in the flow field, it can be taken as small 
as 

There are two major sources of inaccuracy associated with the numerical dissipation terms, 
namely (1) the numerical dissipation terms effectively change the Reynolds number of the flow and 
(2) the explicit smoothing terms added to the continuiity equation do not conserve mass. In 
particular the explicit smoothing on the pressure can affect whether or not the solution converges 
to an incompressible flow field. Chang and Kwak2 showed that the pseudopressure waves decay 
exponentially with time and vanish as the solution converges. Thus the change in pressure with 
time approaches zero. When there is no explicit smoothing added to the equation, the divergence 
of the velocity field identically approaches zero. However, when explicit smoothing is included, as 
the change in pressure approaches zero, the divergence of velocity approaches 

where E,( 1) is the explicit smoothing parameter for the pressure. If E, is scaled by h, i.e. E, =ATE,,  
equation (25) becomes independent of the time step. This term can deteriorate the conservation of 
mass depending on the magnitude of B and the local pressure gradient. When the pressure 
gradients become substantial, as in the case when a region of separation is present, the smoothing 
term does not approach zero, and this contaminates the divergence of the velocity field. In this 
situation mesh refinement usually does not help reduce the magnitude of this term. To allievate 
this problem, it may become necessary to decrease the smoothing coefficient in the continuity 
equation as the solution converges. 

Diagonal algorithm 

In a diagonal algorithm a similarity transform is used to diagonalize the Jacobian matrices and 
uncouple the set of equations. The equations can then be solved by solving scalar tridiagonal 
matrices instead of solving block tridiagonal matrices. A similarity transform which symmetrizes 
and diagonalizes the matrices of the compressible gas dynamic equations has been used by 
Warming et aLZ7 and Turkel.2s This method was used by Pulliam and Chausseez9 to produce a 
diagonal algorithm for the Euler equations. This can be applied to the compressible 
Navier-Stokes equations to obtain considerable savings in computing time.30 In this section 
similarity transforms for the matrices used in the method of pseudocompressibility are presented. 
They are used in a diagonal algorithm which results in a substantial reduction in computer time. 
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Similarity transformations exist which diagonalize the Jacobian matrices 

&=T,&T;', (26) 

where Ai is a diagonal matrix, whose elements are the eigenvalues of the Jacobian matrices, which 
is given by 

Here C is the pseudospeed of sound, which is given by 

The Ti matrix is composed of the eigenvectors of the Jacobian matrix. For i = 1 (l-sweep) the first 
two eigenvectors are given by 

X I  = [ :]. x2=["].  2, 

For i = 2  (q-sweep) they are 

X, = 

For i = 3 ([-sweep) they are 

X, = 

The determinant of Ti is given by 

det (Ti) = 2 e 3 ,  

which remains bounded independent of the geometry. For more detail on the derivation of these 
matrices, see Reference 3. 

The implementation of the diagonal scheme involves replacing the Jacobian matrices in the 
implicit operators with the product of the similarity-transform matrices and the diagonal matrix 
as given in equation (26). The identity matrix in the implicit operators is replaced by the product of 
the similarity-transform matrix and its inverse. A modification is made to the implicit viscous 
terms so that the transformation matrices may also be factored out of these terms. This implicitly 
adds an additional viscous dissipation term to the pressure. The transformation matrices are now 
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factored out of the implicit operators to give 

where the implicit viscous terms are now given by 

Since the transformation matrices are dependent on the metric quantities, factoring them outside 
the difference operators introduces an error. No modificaton has been made to the right-hand side 
of the equation; therefore these linearization errors will not affect the steady-state solution, only 
the convergence path toward the solution. 

The implementation of this algorithm over the block algorithm will result in a substantial 
reduction in computational time per iteration because of the decrease in the number of operations 
performed. Additionally, considerably less memory is required to store the elements on the left- 
hand side. This additional memory was used to further vectorize the existing code as follows. Since 
the solution of a tridiagonal block or scalar matrix is recursive, it is not vectorizable for loops 
which use the current sweep direction as the inner do-loop index. However, if a large number of 
these matrices are passed into the inversion routines at once, then vectorization can take place in 
the ‘non-sweep’ direction. This diagonalized version is given as an option in the INSSD code. 

Boundary conditions 

An important part of any computer code is the proper implementation of boundary conditions. 
The code must be capable of handling the several different types of boundaries encountered in 
numerical simulations, which include solid surface, inflow and outflow, and far-field boundaries. 

Solid surface. At a solid surface boundary the usual no-slip condition is applied. In general the 
grid point adjacent to the surface will be sufficiently fine so that constant pressure normal to the 
surface in the viscous boundary layer can be assumed. For a [=constant surface this can be 
expressed as 

Inflow, outflow and far-field conditions. The inflow and outflow boundary conditions for an 
internal flow problem and the far-field boundary conditions for an external flow problem can be 
handled in much the same way. The incoming flow for both problems can be set to some 
appropriate constant as dictated by the problem. For example, at the inlet to a pipe the pressure 
can be set to a constant and the velocity profile can be specified to be uniform. The conditions in 
the downstream region, however, are the most difficult to provide. Simple upwind extrapolation is 
not well posed. The best convergence rate is obtained if global mass is conserved. So to ensure the 
best results, the velocities and pressure are first updated using a second-order upwind extrapol- 
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ation. Then these extrapolated velocities are integrated over the exit boundary to obtain the outlet 
mass flux. The extrapolated velocity components are weighted by the mass flux ratio to conserve 
global mass, i.e. 

If nothing further is done to update the boundary pressure, this can lead to discontinuities in the 
pressure because momentum is not being conserved. A method of weighting the pressure by a 
momentum correction is used to obtain a pressure which corresponds to the mass-weighted 
velocities: 

where W is the contravariant velocity. In obtaining this formula, it has been assumed that the 
streamlines near the exit plane are nearly straight. Any appreciable deviation will cause a 
discontinuity in the pressure and may lead to an instability. To avoid this, a momentum-weighted 
pressure was used. This was obtained by integrating the momentum-corrected pressure p ” +  ’ and 
the extrapolated pressure p f i  across the exit: 

IF+’= pn+ld&, pi&. ( 3 5 )  s exit - 1  exit 

The final outlet pressure is then taken to be 
n +  1 

!+. P (36)  

Using these downstream boundary conditions, global conservation of mass and momentum are 
ensured, and the scheme will not introduce instabilities into the flow field. 

SSME POWER HEAD FLOW SIMULATION 

Validation of f low solver 

The present flow solver (INS3D code) has been validated by computing fundamental fluid 
dynamics problems such as channel flow, the flow over a backward-facing step and the flow over a 
circular cylinder. Three-dimensional cases include flow over an ogive cylinder, flow through a 
rectangular duct, wind tunnel inlet flow, cylinder wall juncture flow and flow through multiple 
posts mounted between two plates. These results have been reported in our earlier publications 
and will not be repeated here.’-3q31-33 The most striking application of the present code is the 
flow simulation in the power head portion of the SSME.34*35 In the remaining parts of this section 
several important results obtained to date will be presented. 

Background of S S M E  flow analysis 

For future scientific and commercial applications, an upgrade of the SSME power head has 
been under way which will substantially increase the operating margin and the engine durability. 
To achieve this goal without increasing the weight and size of the existing engine, it became 
essential to understand the dynamics of the hot-gas flow in the engine power head. Because of the 
complexity of the geometry, an experimental approach is extremely difficult as well as time- 
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consuming. Computational simulation therefore offers an economical alternative to complement 
the experimental work in analysing the current configuration and to suggest new, improved design 
possibilities. In the past few years major milestones have been established from this effort. In this 
reportt highlights of our initial task are presented. 

In the SSME staged combustion cycle the fuel is partially burned at very high pressure and 
relatively high temperature in the preburners. The resulting hot gas is used to run the turbine and 
is then routed to the main injector where, along with additional oxidizer, it is injected into the 
main combustion chamber. The Reynolds number of the primary flow in the manifold is of order 
lo6 per inch. Because of the high gas temperature, the Mach number is less than 0.12. The flow is 
turbulent and is practically incompressible. 

Figure 1 illustrates the current arrangement for the SSME power head components. Hot gas 
discharged from the gas turbine enters the annular turnaround duct (TAD) and experiences a 180" 
turn before it diffuses into the fuel bowl. This assembly is called the hot-gas manifold (HGM). The 
gas flows into the main injector through three transfer ducts on the left-hand side of the power 
head (fuel preburner side) and enters into the region of the main injector posts. On the right-hand 
side of the power head (oxidizer preburner side) there are two transfer ducts connected to the right- 
hand side of the main injector assembly. Around the bottom portion of each liquid oxygen (LOX) 
post in the main injector assembly there are a number of small holes through which the hot gas 
flows into the main combustion chamber. There it mixes with the oxidizer, which comes through 
circular passages along the centreline of each LOX post. As a part of the current redesign effort, a 
CFD study has been conducted to simulate the dynamics of the hot-gas flow in the power head. 

The computer model and the grid 

A computational model of the power head is chosen to analyse critical areas where the 
dynamics of the hot-gas flow is expected to have a significant effect on the overall performance of 
the SSME. As shown in Figure 2, the model starts from the gas turbine exit on the fuel preburner 
side and extends to the main injector assembly. The main injector consists primarily of a bundle of 
LOX posts, which is physically modelled by a porous medium. 

Figures 2(a) and 2(b) demonstrate the 3D grid for the SSME HGM. They show a horizontal and 
a vertical cross-section respectively of the HGM. Figure 2(c) illustrates the details of the H-grid for 
the cross-section of the three transfer ducts. This H-grid is generated for a unit circle. Near the 
boundary the grid lines are concentric circles except in the vicinity of the four singular points. 
Using the nearly orthogonal grid in this unit circle, one can obtain H-grids for tubes or ducts of 
any given shape and dimension by a simple linear transformation. Figure2(d) shows an 
unwrapped surface of the annular fuel bowl with openings. The elliptical transfer duct shown in 
Figure 2(c) represents an advanced two-duct design which will be explained later in this section. 

The grid for the entire HGM system is generated by using algebraic functions and is written 
with a high degree of flexibility for changing geometric configurations. By specifying the shape, the 
dimension and the desired number of transfer ducts, a grid for a variety of new HGM 
configurations can be obtained in a short time. The ducts described in this paper are connected 
directly to the fuel bowl without any fairings, while in the current engine the three transfer ducts 
are connected smoothly to the annular fuel bowl with fairings. This configuration with an abrupt 
change in geometry is more demanding computationally than smooth configurations. 

Multiple-zone computation 

A large number of mesh points is required to resolve the 3D turbulent flow in the SSME. To 
overcome the limitation in computer core memory, the domain of interest is divided into several 
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zones. This requires a special treatment at the interface for a smooth continuation of the solution 
between zones. Figure 3 illustrates a five-zone arrangement for the HGM flow field. Zone I is 
allocated for the TAD and fuel bowl. Zones 2, 3 and 4 are for the three transfer ducts. The 
racetrack of the main injector is represented by zone 5. Also shown in the figure are some 
overlapping grids in the various zonal interfaces. The grid is chosen to be continuous and smooth 
across the zonal boundaries. In this paper the racetrack (zone5) is not included in the 
computation. Since the vertical plane through the centre of the fuel bowl and the main injector is 
taken to be a plane of symmetry, only half of the HGM is computed. 

The equations of motion given in equations (2) and (7) are of hyperbolic type with parabolic- 
type viscous diffusion terms. Waves are propagating in both upstream and downstream directions 
while the solution approaches a steady state. The interfaces between zones of the present problem 
are locations where the geometry changes abruptly. Therefore in the neighbourhood of these 
interfaces flow is expected to experience a rapid change. To maintain a smooth continuation of the 
solutions across these zones, and hence to achieve a stable and fast-converging computation, a 
means of providing adequate communication for the travelling waves must be established. 
Overlapping regions and a proper zonal interpolation scheme are thus required for this purpose. 

A forward or backward differencing, if applied to the interfaces of multiple zones, would distort 
the geometric representation. To maintain a smooth transition of the flow field across a zonal 
boundary, the Jacobian and the metrics at the interfaces are computed using grid points in 
neighbbouring zones. Then the pressure and the velocities Q are updated explicitly at each 
iteration. Let values at n+1/2 denote the state of conditions to be used to advance the 
computation to n + 1. The values of Q"' ' I 2  for zone 1 at the exit plane are obtained from the values 
of the corresponding plane of zone 2 at n, i.e. 

CQZ '"Izone I = CQLteriorlzone 2; (37) 
and values of Q n + l i 2  for zone 2 at the zonal interfaces are taken from the latest computed result of 
zone 1 as 

CQG 1'21zone2 = CQ%Aorlzone1. (38) 
When more than two points are overlapped, the latest values in the interior of this overlapping 
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region must be properly transmitted to the next zone. There are a number of ways to treat this 
problem. The simplest one is to take an average of the two values computed in zones 1 and 2 as 
follows: 

C Q " +  '"1 =4tCQ"Izone2 + CQ"+ lIzonel).  (39) 
A scheme using updated zonal boundary values, but with no interior updates, has also been tested. 
Either way, converged steady-state solutions have been obtained. However, the scheme with 
interior updates converges at a much faster rate. 

Grid-induced error 

To generate grids for realistic 3D problems like the SSME, it is convenient to combine different 
types of grids depending on the problem's geometric characteristics. In the present application, for 
continuity and smoothness across zonal boundaries, an H-type grid is chosen for the circular 
transfer duct as shown in Figure 2(c). This is then connected to the side-wall grid of the HGM as 
illustrated in Figure 2(d). In generating this grid for the SSME, errors are introduced mainly due 
to grid singularities, skewness and stretching. 

The present AF algorithm integrates the difference equations along the transformed co- 
ordinate (t, q and [) directions. At the junction of the two H-grid directions, flow particles in the 
two co-ordinate directions could communicate only indirectly via the interior mesh points. This 
produces some corner-effect error. Even though this error is not as severe as the one caused by 
external flows, an ad hoc method of eliminating this corner effect is devised based on a finite 
element concept. Let j and k denote the indices for the grid points along the increasing 5- and q- 
directions respectively; and letj= k =  1 be the corner point, which is singular. First, the pressure at 
this point, p1 1, is determined by an extrapolation along the diagonal directionj = k. Secondly, p13 

and p 3 ,  are obtained in the usual manner. Then p12 and p21 are established by an interpolation 
along the circular surface. 

The full viscous term given by equation (1 la) can be simplified to equation (1 1 b) when the grid is 
orthogonal. Even though full viscous terms can be used, it is convenient and economical to keep 
only the orthogonal part. It is therefore of practical interest to estimate the overall error caused by 
orthogonal formulation when a non-orthogonal grid system is used. Using the notation defined in 
Figure 4(a), the skewness can be related to the metric terms as 

As a quick measure of an overall error caused by grid skewness, a 2D channel flow is computed 
using two grids, namely (1) a stretched Cartesian grid (orthogonal) and (2) a non-orthoogonal grid 
where the skewness is controlled on the upper half of the channel as sketched in Figure 4(b). In the 
computation only orthogonal terms are kept. Converged solutions on the lower half, where the 
two grids are identical, are then compared as shown in Figureqb). The total error depends 
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additionally on the Reynolds number and the third-directional skewness. However, this quick 
experiment indicates that the orthogonal assumption can be used without significantly impacting 
on the overall solution if the grid is reasonably orthogonal. 

Turbulence models 

Several levels of turbulence models have been implemented into the code. These include the 
Baldwin and lo ma^^^ algebraic model in which the length scale is determined by the location of 
the maximum moment of vorticity. This model has been widely applied in external flow problems. 
However, the maximum moment of vorticity is not as well defined for fully turbulent internal flows 
as for external flows. In particular, the moment of vorticity is almost constant for a fully developed 
pipe or channel flow except in the sublayer region. For the present problem it is proposed that the 
length scale is determined by the point of minimum vorticity. This length scale is incorporated into 
an extended Prandtl-Karmann mixing-length theory. The combination of these automatically 
accounts for the curvature effect. Full details of this model are given in other  report^.^^,^^ For the 
present SSME flow computations this extended Prandtl-Karmann mixing-length model is used. 
A review on various levels of turbulence models can be found in Reference 38 or 39. 
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Computed results 

Flow solutions in a variety of different HGM configurations at various Reynolds numbers are 
presented. Here the Reynolds number is based on the mean velocity and the duct width at  the 
entrance of the TAD. 

Three-circular-duct H G M .  First, steady-state solutions are obtained for the current three- 
circular-duct HGM at Re= 1000. As illustrated in Figure 5, in the present analysis, the racetrack of 
the main injector is not connected to the ducts. The three transfer ducts are assumed to discharge 
the flow separately. There is no communication of the pressure between the centre and the outer 
ducts at their exit planes. For this reason, small residual waves have remained in the computed 
results. However, the root-mean-square value of the change in the flow variables, AQ, has dropped 
below 10- 5 ,  and an essentially steady-state solution has been obtained. 

In Figures 6(a) and 6(b) velocity vectors are shown in the horizontal and vertical cross-sections 
corresponding to Figures 2(a) and 2(b). The flow in the centre transfer duct, as illustrated in 
Figure 6(b), is highly non-uniform, and a large separation region is formed just downstream of the 
entrance to the transfer ducts. By comparison of the vector length in Figure 6(a), the flow in the 
centre duct is much slower than it is in the outer ones. The results shown in these figures agree 
qualijatively with the airflow test data conducted at an Re of about lo6. The predicted mass flow 
through the centre duct is 9.8% of the total mass flow, which agrees with the test data. 

Figures 7(a) and 7(b) illustrate the 3D velocity vectors at the unwrapped centre plhne and at a 
plane near the inner wall of the fuel bowl. A reverse flow pattern is clearly visible near the inner 
wall. Three-dimensional swirl patterns are predicted in the vicinity of the entrance to the transfer 
ducts. Figure 7(c) is a photograph that indicates, by means of surface streak (shear pattern) 
visualization, the similar swirls at the corresponding locations in the airflow test. 

Figure 5 
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(b) 

Figure 6 

The existence of the swirls can be explained as follows. The flow coming from below has a large 
momentum due to the relatively small width of the annular duct. Among the streamlines of this 
flow in between the two ducts there exists a dividing streamline. This streamline has a stagnation 
point at the top of the fuel bowl as shown in Figures 7(a) and 7(b). On the left-hand side of this 
dividing streamline the flow is bent leftward to the centre duct. Because of symmetry, a rightward 
flow is also approaching the centre from the other side. When these opposite currents approach 
each other, another dividing streamline is formed with a stagnation point again at the top wall. 
The stagnation pressure forces the streams to bend downward, and at the same time the streams 
make a right-angle turn into the circular duct. Conservation of momentum thus requires the 
formation of swirls. 

The pattern of the swirl and its centre depend on the relative strength of the approaching 
currents. Near the centre duct double swirls of equal strength are formed because of symmetry. In 
the vicinity of the entrance to the outer duct the current approaching leftward from the rear part of 
the bowl is more massive than the one approaching rightward. A stronger swirl is thus formed and 
is located sideways toward the weaker stream. 

Figures 8 and 9 are the perpendicular cross-sectional views showing three different sections of 
the transfer ducts, namely near the entrance, at the midsection and near the exit plane. Near the 
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Figure 8 

entrance (Figures 8(a) and 9(a) the velocity vectors in the centre duct have symmetric double 
swirls, while the outer duct has a strong swirl accompanied by a much weaker one. The swirling 
velocities are largely reduced at the midsection and are physically dissipated before entering the 
main injector regions. 

New two-elliptical-duct HGM.  From this computational flow analysis and also from exper- 
iments, the centre duct of the current three-duct HGM is found to transfer a limited amount of 
mass flow (about 10% of the total flow). Also the transverse pressure gradient remains large and is 
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Figure 9 

accompanied by a large bubble of separation after the 180" turn. To improve the quality of the 
flow, a large-area, two-duct design concept has been developed. In additioon, the ducts are chosen 
to have an elliptical shape in order to distribute the mass flow evenly to the main injector region. 
An outer-surface grid for a two-duct model is illustrated in Figure 10. 

First, to reduce the large separation bubble after the 180" turn, a parametric study is performed 
to find the best possible configuration. In Figures 1 l(a) and 1 l(b) comparison of the current three- 
duct configuration and the new two-duct design is illustrated. As shown in Figure 1 l(a), a large 
separation bubble existing in the present design is practically removed in the new configuration 
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shown in Figure 1 l(b). This is confirmed by experiment as shown in Figures 1 l(c) and 1 l(d) for the 
current and new designs respectively, where velocity measurements at five different locations 
across the channel between the inner and the outer wall are shown. 

Figure 12(a) illustrates an example of the triple-swirl pattern in the elliptical duct near the 
entrance at Re = lo3. Here, because of the absence of the centre duct, the stream approaching from 
the left-hand side is much stronger than in the previous case. Another point of interest is that the 
upcoming stream entering the elliptical duct directly from below is also more massive. The three 
currents are almost of the same strength, resulting in a triple-swirl flow. The swirling is greatly 
dissipated along the duct. Figure 12(b) shows the remaining small swirling vectors at the duct exit. 
A steady-state, turbulent flow solution for an HGM with two elliptical transfer ducts at Re= lo5 
has been obtained.35 In Figure 13 the swirling flow in the elliptical transfer duct is illustrated. In 
comparing these results with the laminar solution in Figure 12, it is seen that only a double-swirl 
pattern exists. 

The most significant aspect of the present study is to pinpoint the locations where the flow 
experiences the most energy losses. An important measure of the energy losses is the mass- 
weighted average total pressure along the flow. Figure 14 illustrates the decreasing coefficient of 
the mass-weighted total pressure along the centreline of the TAD, the fuel bowl and the transfer 
duct. The total pressure coefficient Cp0 is defined as 
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where 

The discontinuities shown in the figure correspond to the entrance of the duct where energy fluxes 
are computed over different planes. In the figure, three different HGM configurations are 
compared. The initial two-duct design shows 28% less total pressure drop compared to the 
current three-duct version. After fine-tuning the two-duct configuration computationally, the 
pressure drop decreased even further to 36% less than the original configuration. This final 
configuration is then tested using cold airflow, which shows 40% reduction in pressure loss. 

CONCLUDING REMARKS 

This paper presents a summary of incompressible Navier-Stokes flow solver development work. 
The SSME power head has been simulated using this flow solver. Computational results compare 
favourably with test data and offer information not readily available from experiments. The results 
show that CFD can reduce the development time and cost by suggesting the best possible 
configurations for final verification by experiments. For example, in redesigning the TAD, over 20 
different configurations were studied computationally, thus providing the best geometry for 
designers. Further study is in progress, and the total performance improvement will be compared 
in the future. At the time the present SSME analysis was performed, the computational model of 
the power head was designed to obtain solutions within a reasonable turnaround time. Therefore 
the total number of grid points was limited and the model could include the TAD and transfer 
ducts only. Despite its limitation, the present application provides an excellent example of how the 
present CFD and computer capabilities can be integrated into the aerospace design process. 
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